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Coupled Receptors and Receptor Tyrosine Kinases
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Summary
G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are trans-

membrane receptors that initiate intracellular signaling cascades in response to a diverse
array of ligands. Recent studies have shown that signal transduction initiated by GPCRs
and RTKs is not organized in distinct signaling cassettes where receptor activation leads
to cell division and gene transcription in a linear manner. In fact, signal integration and
diversification arises from a complex network involving crosscommunication between
separate signaling units. Several different styles of crosstalk between GPCR- and RTK-
initiated pathways exist, with GPCRs or components of GPCR-induced pathways being
either upstream or downstream of RTKs. Activation of GPCRs sometimes results in a
phenomenon known as “transactivation” of RTKs, which leads to the recruitment of
scaffold proteins, such as Shc, Grb2, and Sos in addition to mitogen-activated protein
kinase activation. In other cases, RTKs use different components of GPCR-mediated
signaling, such as β-arrestin, G protein-receptor kinases, and regulator of G protein sig-
naling to integrate signaling pathways. This chapter outlines some of the more common
mechanisms used by both GPCRs and RTKs to initiate intracellular crosstalk, thereby
creating a complex signaling network that is important to normal development.

Key Words: G protein-coupled receptor; growth factor receptor; crosstalk;
transactivation; MAPK.

1. Introduction
Cells use a wide array of biochemical mechanisms to respond to extracellu-

lar signals, such as hormones, neurotransmitters, chemokines, odorants, and
light. Three major classes of receptors on the surface of the cell detect these
signals. The first class of receptor proteins is peripheral membrane proteins,
which adhere only loosely to the biological membrane with which they are
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associated. These molecules do not span the lipid bilayer core of the membrane
but attach indirectly, typically by binding to integral membrane proteins, or by
interactions with the lipid polar head. Another major class of receptors is rep-
resented by intracellular receptors, such as those for steroid hormones. A third
major class of receptors includes transmembrane proteins, which reside and
operate typically within a cell’s plasma membrane but also are found in the
membranes of some subcellular compartments and organelles. Binding of a
signaling molecule to the receptor on the extracellular domain helps transduce
the signal through the transmembrane domain to the intracellular space of the
cell. There are several types of transmembrane receptors including integrins, G
proteins, and protein tyrosine kinases.

All G protein-coupled receptors (GPCRs) identified to date share a typical
structural motif of seven membrane-spanning helices and are coupled with
heterotrimeric G proteins. Agonist-stimulated GPCRs function as guanosine
diphosphate (GDP)/guanosine triphosphate (GTP) exchange factors and pro-
mote the release of GDP and binding of GTP to the α-subunits. This process
activates the G protein by dissociating GTP-bound Gα from the heterodimeric
Gβγ subunit. Both GTP-Gα and Gβγ subunits interact with a variety of effec-
tor systems, such as adenylyl cyclase, phospholipase (PL) C isoforms, and ion
channels, thereby modulating cellular signaling pathways through second mes-
sengers cyclic adenosine monophosphate (cAMP), protein kinase (PK) C, and
Ca2+ and other intermediate molecules, such as phosphatidylinositol 3-kinase
(PI3K), reactive oxygen species (ROS), Pyk2, and Src (1).

Receptor tyrosine kinases (RTKs) comprise another class of transmembrane
proteins that span the membrane just once. Classically, RTKs are activated by
ligands, such as growth factors and insulin. Upon ligand binding and receptor
dimerization, the activated receptor acts as a tyrosine kinase, autophos-
phorylates itself on cytoplasmic tyrosine residues, and subsequently acts as a
scaffold to assemble signaling partners. Classically these include Shc, Grb2,
and Sos, which lead to Ras activation followed by an increase in mitogen-
activated protein kinase (MAPK) activity (2,3).

Initially, it was thought that GPCRs and RTKs, along with their respective
downstream effectors, represented distinct and linear signaling units that con-
verged on downstream targets, such as the MAPKs. Recently, it has become
clear that GPCR- and RTK-mediated signaling pathways are not mutually
exclusive of one another and often function as partners, with G protein partici-
pation being either upstream or downstream of the RTKs, stimulating interac-
tions at multiple levels between various molecules downstream of the receptors
(4,5). For example, both pathways involve tyrosine phosphorylation of Shc
and Ras activation upstream of MAPK activation (6–8). The involvement of
common molecules initiates an integration of diverse stimuli through complex
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cross-communication and provides intricate control over regulatory mecha-
nisms that affect cell proliferation, differentiation, growth, and survival. This
chapter reviews the signaling pathways associated with crosstalk between
GPCRs and RTKs that could be initiated by either GPCR or RTK ligands.

GPCRs initiate crosstalk in several different ways. In some cases, GPCRs
can form homodimers and heterodimers in order to increase functional
activity. Several such examples have been discovered, such as the
heterodimerization of the γ-aminobutyric acid receptors, the homodimerization
of the β2-adrenergic receptors, and the heterodimerization of the dopamine D2
and somatostatin SSTR5 receptor (9–11). In addition, treatment of cells with
ligands for GPCRs results in tyrosine phosphorylation and subsequent activation
of RTKs, by a phenomenon known as “transactivation” (12,13). In each case,
increased dimerization of the RTKs leads to the recruitment of scaffold proteins,
such as Shc, Grb2, and Sos, via their Src homology (SH)2 domains. Several
GPCR agonists, such as angiotensin II (AngII), lysophosphatidic acid (LPA),
bradykinin, and endothelin, transactivate RTKs such as the epidermal growth
factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR).

In recent years, different concepts have emerged to explain mechanisms of
transactivation as shown in Fig 1. Molecules such as PKC, Src, and ROS mediate
RTK transactivation. In general, both calcium-dependent and -independent
pathways leading to RTK transactivation have been suggested. One of the new
concepts in transactivation mechanisms is that of GPCR ligands activating

Fig. 1. Schematic showing G protein-coupled receptor–ligand-induced transactivation
of receptor tyrosine kinase.
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“sheddases,” proteases that cleave an RTK ligand molecule to its RTK-binding
form. This active ligand in turn activates the RTK. Another mechanism of
transactivation involves the creation of signaling domains by GPCR–ligand
interaction, where there is a movement of RTKs to a specific subcellular location,
leading to RTK–GPCR association and downstream signaling. Several adaptor/
scaffold proteins such as Gab1, IRS-1, and GIT1, which serve as docking sites
for multiprotein complexes at the RTK, also have been implicated as mediators
of GPCR-ligand induced RTK transactivation, Activation of protein tyrosine
phosphatases that “transinactivate” RTKs in response to GPCR activation also
have been recently suggested as a mechanism of GPCR–RTK crosstalk.

In some cases, the RTK activation of downstream effector responses is sen-
sitive to pertussis toxin, suggesting that G protein involvement is proximal to,
and downstream of the RTKs. In this model, the RTKs use several different
components of GPCR-mediated signaling, such as β-arrestin, regulator of G
proteins (RGS), and G protein receptor kinases (GRKs). Studies by various
groups have demonstrated two major models for G protein signaling down-
stream of RTKs. In the first scenario, activated RTKs have been shown to in-
duce the activation of G proteins by dissociating the Gα subunit from the Gβγ
subunit leading to downstream signaling (Fig. 2A) Alternatively, stimulation
of an RTK by a ligand leads to a direct association between GPCRs and RTKs
through scaffold proteins, such as RGS, leading to the use of G protein-associ-
ated molecules such as β-arrestin and Grk2, as shown in Fig. 2B. These data
indicate the involvement of GPCRs both upstream and downstream of the RTK
signal transduction. Outlined in Headings 2 and 3 are a few common examples
of crosstalk between GPCRs and RTKs. The novel crosstalk that may occur
between two different RTKs also will be discussed.

2. GPCR/G Protein Ligand-Initiated Receptor Crosstalk
2.1. Angiotensin II

AngII, a multifunctional octapeptide of the renin–angiotensin system, influ-
ences the function of cardiovascular cells via intracellular signaling that is ini-
tiated at the AngII type 1 and type 2 receptors (AT1R and AT2R), which are
GPCRs that have opposing effects on cell growth and other physiological func-
tions (14,15). Crosstalk exists between AT1R and AT2R, and studies performed
by Cui et al. demonstrate a role for SHP-1 tyrosine phosphatase in this cross
talk that regulates survival of fetal vascular smooth muscle cells (VSMCs) (16).
Activation of Gq/11 by AngII stimulates PLC to generate inositol (1,4,5)-triph-
osphate and diacyglycerol, thereby increasing intracellular Ca2+ levels and ac-
tivation of PKC. Downstream effectors of AngII signaling include the
following:

1. Extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and JNK.
2. Tyrosine kinases, such as Src and Pyk2.



G Protein-Coupled Receptor Crosstalk 55

3. PI3K and PKB/Akt.
4. Janus-activating kinase (JAK) and signal transducers and activators of transcrip-

tion (STATs).
5. RTKs, such as the EGFR and PDGFR (17–23).

2.1.1. EGFR Transactivation

AngII induces transactivation of the EGFR and, in turn, the EGFR serves as
a scaffold for assembling signaling molecules, such as MAPKs and Akt that
are important for downstream signaling, as well as the expression of the AT1R
signaling repertoire in VSMCs (20,24). Downstream, AngII-induced EGFR
transactivation plays a role in inducing eukaryotic translation initiation factor
4E and 4E binding protein 1 phosphorylation, thereby playing a role in transla-
tional control and protein synthesis and this process upregulates proteins like
the plasminogen activator inhibitor type 1 (25,26). AngII induces EGFR

Fig. 2. Schematic showing receptor tyrosine kinase (RTK)–ligand-induced crosstalk
with G protein-coupled receptors (GPCRs). (A) RTK–ligand-induced effect on G pro-
tein activation. (B) RTK–ligand-induced utilization of GPCR/G protein-regulating sig-
naling components.
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transactivation by both Ca2+-dependent and Ca2+-independent processes
(21,23,24,27,28). Three major mechanisms are involved in AngII-induced
EGFR transactivation—an upstream tyrosine kinase, ROS, or through the use
of metalloproteases that generate EGF-like ligands (sheddases in Fig. 1) In
addition, recent studies from our laboratory indicate a novel mechanism by
which glucose-dependent EGFR N-glycosylation and, hence, transactivation,
modulates AngII signal transduction (29).

2.1.1.1. NON-RTKS

Two major non-RTKs have been shown to be involved in EGFR
transactivation by AngII. Several studies done in VSMCs, cardiac myocytes,
and rat anterior pituatory cells have shown that c-Src is necessary for the
transactivation of the EGFR, and this in turn induces Ras/ERK activation
downstream (12,24,30–32). In rat liver epithelial cells, Li et al. proposed an
AngII-stimulated EGFR-dependent signaling pathway to Ras only when PKC
activity was inhibited (33). Interestingly, in VSMCs, AngII-induced p70rsk

activation is mediated via both the ERK and PI3K/Akt cascades that bifurcate
at the point of EGFR-dependent Ras activation (34).

Another non-RTK, the proline-rich kinase 2 (PYK2)/cell adhesion kinase β
also is induced by several GPCR agonists. Its role in the transmission of mito-
genic signals via EGFR transactivation is somewhat controversial as shown in
AngII-stimulated VSMCs, cardiac fibroblasts, and PC12 cells (27,35–37).
Tyrosine phosphorylated Src is often found in association with the transactivated
EGFR or with PYK2 on Gq-coupled receptor stimulation, suggesting activated
Src to be the primary mediator of EGFR transactivation (35,36,38).

In addition to activating Src and PYK2, AngII induces the JAK/STAT sig-
naling pathway, which has been implicated in ERK activation and subsequent
cell growth in VSMCs, cardiac fibroblasts, and cardiomyocytes (39–41).
Because JAK is involved in growth hormone-induced EGFR transactivation,
the possibility of JAK-dependent EGFR transactivation by AngII also exists (42).

2.1.1.2. REACTIVE OXYGEN SPECIES

The generation of ROS, such as superoxide and hydrogen peroxide (H2O2)
that act as intercellular and intracellular second messengers, is regulated by
cytokines and growth factors, including AngII, in several cell types (43,44).
AngII-induced transactivation of the EGFR is mediated, in part, through ROS
derived from nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase,
and this transactivation is strongly inhibited by antioxidants, such as, tiron, and
N-acetylcysteine (28,45–47). Once produced, ROS activate several receptor-
and non-RTKs, such as the JAK and Src families, PYK2, as well as the EGFR,
stimulating the formation of the Shc–Grb2–Sos complex at the EGFR. This
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complex subsequently activates Ras followed by the p38 MAPK and Akt/PKB
pathways downstream of the EGFR (48,49). In addition, AngII promotes the
movement of AT1R to caveolae and lipid rafts leading to AT1R–EGFR associa-
tion in VSMCs through the tyrosine phosphatase SHP-2 (20,50). Depletion of
membrane cholesterol by β-cyclodextrin disrupts caveolae structure and inhib-
its tyrosine phosphorylation of the EGFR and subsequent activation of PKB
induced by AngII.

2.1.1.3. METALLOPROTEINASE CLEAVAGE OF HEPARIN-BINDING EGF

Prenzel et al. first showed that a chimeric RTK in rat fibroblasts, consisting
of the EGFR ectodomain and the PDGFR transmembrane and intracellular
domain, was transactivated with GPCR ligands, whereas the endogenous
PDGFR was not, by the cleavage of proheparin-binding (pro-HB)-EGF to its
active form HB-EGF by matrix metalloproteinases (MMPs; [51]). Free
HB-EGF subsequently binds to the EGFR, leading to EGFR transactivation.
The role of MMPs in AngII-induced transactivation of the EGFR remains
controversial; studies done in our laboratory on VSMCs did not show inhibi-
tion of EGFR transactivation with MMP inhibitors, whereas other studies have
shown an inhibition by pharmacologically inhibiting the MMPs (22,23,52).
Eguchi et al. suggest that MMP-dependent EGFR transactivation by AngII
activates the ERK and p38 MAPK pathways, whereas JNK activation is regu-
lated independent of EGFR transactivation (23).

Recent data suggests that different proteases (sheddases) may cleave pro-
HB-EGF through PKC-dependent and PKC-independent mechanisms in
response to different stimuli. Some data suggest that PKC mediates AngII-
induced EGFR transactivation via activation of MMPs in response to GPCR
agonists coupled to Gq (26,51,53–56). However, other studies, such as those
done by Frank et al., showed that ROS transactivate EGF receptors through the
release of HB-EGF by metalloproteases in VSMCs and that this transactivation
is independent of PKC (57). In addition to the EGFR, the primary cognate
HB-EGF receptor Erb1 has also shown to be transactivated by AngII in human
prostate stromal cells, thereby promoting cell growth (58).

2.1.2. PDGFR Transactivation

Although PDGFR has two distinct receptor subtypes, rapid tyrosine phos-
phorylation of only the PDGFβ receptor by AngII has been reported (59–61).
This transactivation induces association of the activated receptor with p66Shc,
Grb2, and c-Src. In addition, PDGFR transactivation by AngII was not sensi-
tive to BAPTA-AM, suggesting that this transactivation pathway was Ca2+-
independent (59). Like AngII-induced EGFR transactivation, PDGFR
transactivation is redox-sensitive and is abrogated by N-acetylcysteine and
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Tiron. Recently, the potential downstream signaling of the PDGFR to ERK 1/2
via AngII-mediated transactivation was proposed in mesangial cells (62).
Additional studies by Conway et al. have shown that the activation of the
MAPK pathway is dependent on both Src and complex formation of Grb2 with
PI3K (63). New studies indicate that, like the EGF-family of ligands, a new
ligand for the PDGFRα, PDGF-C, could be another growth factor that is
released from the cell surface after limited proteolysis leading to transactivation
of the PDGFR (64).

2.1.3. Insulin-Like Growth Factor 1 Receptor Activation

Another growth factor receptor that is transactivated by AngII is the insulin-
like growth factor 1 receptor (IGF-1R) in VSMCs. IGF-1R becomes phospho-
rylated on its β-subunit and this in turn phosphorylates the adapter insulin
receptor substrate-1 (IRS-1 [65]). Transactivation of the IGF-1R has been
shown to play a critical role in PI3K activation by AngII, but does not seem to
be required for stimulation of the MAPK cascade (66). Touyz et al. demon-
strated that AngII stimulates production of NADPH-inducible ROS partially
through IGF-1R transactivation which leads to phosphorylation of p38 MAPK
and ERK5, but not ERK 1/2 (49). Also, the role of insulin receptor substrate
(IRS)-1-mediated signaling in response to AngII in VSMCs remains contro-
versial as inhibition of insulin and IGF-1 signaling by AngII at the levels of
IRS-1 and PI3K have been reported (67,68).

2.2. Lysophosphatidic Acid

LPA is an important component of serum that affects cell proliferation, sur-
vival, adhesion, and migration by transducing signaling through the Edg fam-
ily of receptors that are coupled to Gi, Gq/11, and G12/13 proteins. LPA
induces ERK 1/2 activation by mediator protein tyrosine kinases, such as Src,
PYK2, and transactivated EGFR (13,69–73). LPA-induced EGFR tyrosine
phosphorylation is weak but functionally significant in several cell lines tested
(74). Inhibition of LPA induced EGFR transactivation suppressed tyrosine
phosphorylation of adapter proteins Shc and Gab1, which in turn inhibited Shc-
Grb2 and Gab1-SHP2 association that was necessary for ERK 1/2 activation.
This indicates that LPA-induced transactivation is upstream of ERK 1/2 acti-
vation, c-fos induction and DNA synthesis (13,74,75).

Several studies have shown that LPA-mediated EGFR is dependent on cal-
cium and ROS (76–80). In addition, LPA has been identified as a major serum
factor for stimulating pro-HB-EGF ectodomain shedding via a Ras-Raf-
MAPK/ERK pathway to transactivate the EGF receptor (81,82). Recently, LPA
also has been shown to transactivate the HB-EGF receptors ErbB1 and ErbB4
via a Ca2+-dependent pathway (83).
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LPA receptors also interact with and transactivate the nerve growth factor
receptor TrkA, stimulating translocation of the TrkA receptor to the nucleus
and this regulates the ERK 1/2 pathway (84). LPA also mediates phosphoryla-
tion of the PDGFR-β in human bronchial epithelial cells via phospholipase D
(85). In addition to transactivating these growth factor receptors, LPA induces
phosphorylation of α1B-adrenoreceptor phosphorylation through dissociated
Gβγ subunits, EGFR transactivation, PI3K and PKC (86).

2.3. Endothelin

Endothelin (ET) isopeptides (ET-1, ET-2, and ET-3) are potent vasocon-
strictors that bind specific ET (ETA and ETB) receptors coupled to Gq proteins.
Similar to the angiotensin receptors, crosstalk between the two ET receptors
has also been reported in rat mesenteric arteries (87). Activation of GPCRs by
ET-1 phosphorylates the EGFR in a Ca2+- and MMP-dependent manner, fol-
lowed by an increased association of the phosphorylated EGFR with Shc and
Grb2, subsequently leading to MAPK phosphorylation, p70S6K activation,
c-fos induction, and cell proliferation (13,51,88,89). In addition, Hua et al. have
shown that ET-1 activates ERK 1/2 in mesangial cells predominantly through
a pathway involving EGFR transactivation and its attachment to caveolin, leading
to compartmentalization of these signaling molecules (90). In a rat cardiac allograft
model, Sihvola et al. demonstrated an increase in VSMC proliferation and mi-
gration via ET-1 induced PDGFR upregulation (91). ET-1 also signals through
other GPCRs. ET-1 and norepinephrine signaling crosstalk through differen-
tial pathways regulating myocardial contractility, and this is mediated by Ca2+

transients, PKA, PKC, PKG, and phosphatases (92). PKC also plays a major
role in ET-induced phosphorylation of the α1B-adrenergic receptor (93,94).

2.4. Bradykinin

Bradykinin is an inflammatory mediator that exerts its biological effects
through the activation of several bradykinin receptors. The B2 receptor (B2R)
is capable of coupling to different classes of G proteins in a cell specific and
time-dependent manner, resulting in simultaneous or consecutive initiation of
different signaling chains that may crosstalk. Blaukat et al. have shown that
bradykinin activates both Gαq and Gαi pathways simultaneously and coopera-
tive signaling between these two activated G protein pathways is required for a
synergistic stimulation of ERK 1/2 (95). Other studies have shown that the
activated bradykinin receptor coupled to Gαq can activate Gαi and subsequently
adenylate cyclase and cAMP. This activation leads to differential regulation of
PLC preventing multiple stimulation of MAPK (96). Bradykinin modulates
α1b-adrenoreceptor phosphorylation in rat-1 fibroblasts (97). The B2R also has
been shown to crosstalk with nucleotide receptors, such as P2Y, which are also
coupled to Gq (98,99).
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Schindelholz et al. report growth cone collapse of neuronal growth factor
(NGF)-differentiated PC12 cells evoked by bradykinin, mediated by c-Src and
paxillin, revealing a crosstalk between bradykinin and growth factor receptors,
such as the NGF receptor (100). Bradykinin-induced transactivation of the
KDR/Flk-1 (VEGF receptor 2) receptors associated with endothelial nitric
oxide synthase production has also been shown in endothelial cells (101,102).
Work done in several systems have shown that bradykinin induces
transactivation of the EGFR via both PKC-dependent and PKC-independent
mechanisms, which leads to phosphorylation of downstream molecules, such
as ERK 1/2, AMP responsive element-binding protein (CREB), nuclear factor
(NF)-κB, and E2F (103–105). EGFR transactivation by bradykinin also
induces desensitization of EGFRs by a process associated with the loss of cell-
surface EGFRs through clathrin-mediated endocytosis via β-arrestin and
dynamin (104). Whether calcium and calmodulin are required for EGFR
transactivation by bradykinin remains a matter of controversy (106–108). Finally,
novel findings by Graness et al. show bradykinin-mediated “transinactivation”
of EGFR by stimulation of a protein tyrosine phosphatase (109).

2.5. Sphinosine 1-Phosphate

Sphinosine 1-phosphate (S1P) is a bioactive lipid released by activated plate-
lets that induces cell processes, such as migration and proliferation by binding
the Edg family of GPCRs. S1P induces transactivation of the vascular EGFR
(VEGFR) in human umbilical vein endothelial cells, followed by Src activa-
tion and phosphorylation of the adaptor protein CrkII, to induce membrane
ruffling (110). In other studies, transactivation of the VEGFR by S1P is inde-
pendent of ROS and is mediated by Ca2+ and Src, leading to the activation of
the PI3K/Akt/endothelial nitric oxide synthase pathway (111). S1P also stimu-
lates Akt phosphorylation via Gi-dependent PDGFRβ transactivation (112).
Transactivation of EGFR by S1P has also been reported through a PKC-dependent
pathway that results in the activation of the Ras–MEK–ERK pathway (113).

2.6. Thrombin

Thrombin is a procoagulant protease that signals through the protease-
activated receptor family that are coupled to G proteins. Transactivation of the
EGFR on thrombin stimulation has been shown in a number of systems through
multiple mechanisms (114). Several groups also showed that thrombin
transactivates the EGFR via HB-EGF, Src, and PYK2 followed by increased
ERK 1/2 and p38 MAPK activation, leading to an increase in CREB activation
DNA synthesis and interleukin 6 gene expression (115–119). In rat VSMCs,
thrombin induces the release of basic FGF that results in FGF receptor
transactivation-mediated cell proliferation (120). Thrombin also induces IGF-
1R transactivation in rat VSMCs (121).
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2.7. Adrenoreceptor Agonists

AngII stimulates the release of norepinephrine from the sympathetic nerves
that is a ligand for the α1-adrenergic receptor. In carotid injury models, Majesky
et al. showed that α1-adrenergic stimulation caused PDGF-A expression, sug-
gesting crosstalk between AngII and PDGF signaling (122). Luttrell et al. also
have demonstrated EGFR transactivation by Gi coupled-α-adrenergic recep-
tors followed by tyrosine phosphorylation of the Shc adapter protein (12). In
addition, PDGFRs reduce actions of α1B-adrenergic receptors by phosphory-
lating the receptors and decreasing their association with their G proteins (93).

3. Growth Factor-Initiated Crosstalk Via G Proteins
3.1. Epidermal Growth Factor

Upon EGFR activation and autophosphorylation, numerous phospho-
tyrosines are generated that serve as docking sites for proteins, such as PLCγ,
Shc, Gab1, and Grb2, which in turn activate downstream pathways. However,
the EGFR also uses components involved in G protein signaling and
bidirectionally interacts with GPCRs. EGF stimulation leads to increased asso-
ciation of Gα12 with EGFR, which leads to the activation of PLCγ, ERK 1/2,
and increased DNA synthesis (123–125). EGFR interaction with Gαi inhibits
Gαi. EGFR kinase phosphorylates and associates with Gαs leads to the activa-
tion of Gαs and in the heart this mechanism leads to increased cAMP accumu-
lation via activation of adenylate cyclase (126–128).

Direct activation of EGFR also induces α1B-adrenergic receptor phosphory-
lation by PKC via activation of PI3K (93). Also, Maudley et al. reported that
the EGFR exists in a preformed complex with β2-adrenergic receptor
(129,130). Transactivation of EGFR by GPCR agonists leads to the β-arrestin
and Gβγ-mediated internalization of this complex, which is necessary for the
activation of MAPK. However, EGF itself can stimulate the recruitment of
β-arrestin to the EGFR, suggesting downstream interaction between the GPCR
and EGFR pathways (130). EGF is also known to regulate other GPCR signal-
ing component associations, such as that between GRK2 and PDEγ, thereby
regulating MAPK activation and EGF-mediated phosphorylation of RGS
increases GTPase activating protein activity (131,132).

3.2. Platelet-Derived Growth Factor

There is substantial evidence showing a requirement for G proteins in plate-
let-derived growth factor (PDGF)-stimulated pathways. Several studies have
shown that activation of c-Src and ERK 1/2 downstream of PDGF stimulation
is sensitive to pertussis toxin (63,133). In addition, Freedman et al. showed
that GTPγS binding to Gαi increases on PDGF stimulation (134). PDGF induc-
tion of ROS also seems to require coupling of Gαi1 and Gαi2 to the PDGFR
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(135). PDGF-induced cell migration requires the presence of EDG-1 a GPCR
for S1P that activates Rac-dependent pathways (136).

PDGFβ receptor signals through an endocytic pathway as well via GPCR-
dependent machinery. The GRK2/β-arrestin complex constitutively associates
with the PDGFR and is recruited via its association with the GPCR. On stimu-
lation with PDGF, c-Src is recruited to the PDFGR–GPCR complex leading to
β-arrestin-mediated signaling and ERK 1/2 activation (134,137). RGS proteins,
such as RGS2, that are GAPs involved in terminating GPCR signaling, are also
recruited to the plasma membrane after PDGF stimulation, suggesting another
component of GPCR signaling is involved in PDGFR signaling (138).

3.3. Neuronal Growth Factor

NGF promotes the survival and differentiation of neurons and signals
through its receptor TrkA, The TrkA receptor is constitutively bound to GRK2
and stimulation with NGF promotes binding of β-arrestin to this complex in a
Gαi/o-dependent manner. This initiates an integrative activation of the ERK 1/2
pathway via a process that involves β-arrestin 1 and clathrin-mediated endocy-
tosis of the TrkA–GPCR/B-raf/MEK-1 signal complex. NGF also reduces
cAMP levels in PC12 cells via a G protein-dependent mechanism (139).
Another level of GPCR crosstalk is with tyrosine kinase receptors through RGS
proteins, where the RGS serves as a scaffold bridging together GPCRs and
RTKs. Lou et al. were the first to show suppression of GPCR signaling by Trk,
which is dependent on a PDZ domain in the RGS protein GIPC (140).

3.4. Fibroblast Growth Factor

Fibroblast growth factors (FGFs) are members of a family of polypeptides
synthesized by a variety of cell types that signal through one of four FGF
receptors, i.e., FGFR1–4. Similar to other RTKs, FGFR stimulation with FGF
results in receptor dimerization, phosphorylation, and activation of the Ras–
Raf–MEK–MAPK pathway through either the Crk/FGFR substrate 2 (FRS2)/
Grb2/Sos or Shc/Grb2/Sos complex. Fedorov et al. have shown that that Giβγ
are involved in FGF-2 mediated activation of ERK 1/2 that promotes skeletal
muscle differentiation (141). Also, FGF-2 induces S1P-coupled Gi receptors
by activating sphingosine kinase-1, the enzyme that converts sphingosine to
S1P (142). It has also been demonstrated that FGF-2 promotes dissociation of
the Gsβγ heterotrimer, leading to Gαs stimulation of adenylyl cyclase and Gβγ
inhibition of NADPH oxidase (143).

3.5. Vascular Endothelial Growth Factor

VEGF is a cytokine that is essential for angiogenesis and endothelial cell
differentiation (vasculogenesis) during development (144,145). VEGF regu-
lates multiple biological functions through three major types of receptors—the
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RTKs Flt1 (VEGFR-1), KDR/Flk1 (VEGFR-2), and Flt-4 (VEGFR-3), a
nontyrosine kinase transmembrane protein Neuropilin-1 and heparan sulfate
proteoglycans (146–151). Zeng et al. have demonstrated that VEGFR-2 (KDR)
stimulates MAPK activation, migration, and proliferation via Gαq and Gβγ
subunits (152,153). Also, KDR signaling is downregulated by VEGFR-1 (Flt-1)/
Gi/Gβγ-mediated activation of cdc42 and Rho, demonstrating opposing effects
of the two VEGFRs (154).

3.6. Insulin and IGF

Insulin receptors have been shown to associate with and tyrosine phosphorylate
Gi and Gs in several studies (155,156). Also, insulin phosphorylates the β2
adrenergic receptor (β2-AR), leading to increased Grb2/β2-AR interaction. Grb2
inturn binds PI3K and dynamin, and this leads to the internalization of β2-AR.

IGF-1 is a 12-kDa mitogenic and survival factor hormone peptide secreted
by multiple cells that interacts with its own receptor, as well as the insulin
receptor. IGF-1 preferentially interacts with and uses the Gi-dependent signal-
ing pathway by promoting Giβγ dissociation to lower cAMP levels and acti-
vate ERK 1/2 and DNA synthesis in muscle cells and fibroblasts (157–159).

4. Growth Factor-Initiated RTK–RTK Crosstalk
Finally, EGFR and PDGFβ-R interact physically forming heterodimers and

stimulation by EGF has been shown to increase the tyrosine phosphorylation
of the PDGFβ-R leading to the recruitment of PI3K to the PDGFR (160,161).
Bagowski et al. also provided evidence for the negative regulation of EGF-
induced c-jun transcription by PDGF-mediated phosphorylation of the EGFR,
demonstrating crosstalk between different members of the RTK family (162).
Insulin receptors that are hormone-stimulated transactivate IGF-1 receptors
(163). Recently, Roudabush et al. showed that ERK 1/2 activation downstream
of IGF-1R stimulation is mediated by transactivation of the EGFR in Cos7
cells proposing an IGF-1R–EGFR crosstalk pathway based on metalloprotease-
induced shedding of pro-HB-EGF (164).

5. Other Ligand-Induced Receptor Crosstalk
5.1. Integrins

Integrins, which are the primary link between extracellular matrix ligands
and cytoskeletal structures, are a complex family of noncovalently associated
heterodimeric transmembrane receptors composed of α and β subunits. They
serve as both adhesive receptors and intracellular signaling mediators
(165,166). In addition to transmitting signals from the extracellular matrix to
the intracellular environment (“outside-in” signaling), integrins can be modi-
fied by agonists that bind nonintegrin cellular receptors like growth factor re-
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ceptors. This concept of “inside-out” signaling in turn regulates integrin acti-
vation and function. In addition, it has been shown that integrin activation of
growth factor receptors can occur even in the absence of the growth factor
(167–169).

RTKs and growth factors interact spatially at multiple levels. At the plasma
membrane, specific direct associations between integrins and RTKs, such as
the PDGFR, EGFR, the insulin receptor, the IGF-1R and the VEGFR2, have
been identified (170–172). Another level of interaction between growth factor
receptors and integrins is at the level of plasma membrane lipid rafts as shown
with PDGFR by Baron et al. (173,174). A third level of intersection between
the growth factor and integrin pathways are at more downstream signaling
molecules, such as focal adhesion kinase (FAK), and activation of a particular
signaling cascade directly by integrins could lead to growth factor dimerization
and phosphorylation/activation ultimately influencing MAPK activation (175,176).

In addition to interacting with growth factor receptors, integrins also inter-
act with GPCRs, such as the LPA receptor 3. Studies by Sengupta et al. show
that laminin-induced cell migration in ovarian cancer cells is mediated by LPA
via PLA2 and PI3K, revealing a new mechanism of crosstalk between a β1
integrin receptor and a GPCR (177).

6. Conclusion
Signaling cascades often were considered to be discrete signaling cassettes

that linked activation of a receptor to gene transcription and physiological func-
tion in a linear manner. Recent insights have broadened this view to encom-
pass a complex network that allows multiple levels of crosstalk between the
individual signaling units (stimulated by GPCR and RTK), leading to signal
integration. This selective crosscommunication between different receptor
classes generates common signals, including the stimulation of Ras GTPases
and MAPKs, that control cell proliferation, differentiation, growth, and survival.
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