
Chapter 2

BASIC CONCEPTS OF REAL TIME OPERATING
SYSTEMS

Franz Rammig, Michael Ditze, Peter Janacik, Tales Heimfarth, Timo Kerstan,
Simon Oberthuer and Katharina Stahl

Abstract Real-time applications usually are executed on top of a Real-time Operating
System (RTOS). Specific scheduling algorithms can be designed. When possi-
ble, static cyclic schedules are calculated off-line. If more flexibility is needed
on-line techniques are applied. These algorithms are bound to priorities which
can be assigned statically or dynamically. Designing a proper RTOS architec-
ture needs some delicate decisions. The basic services like process manage-
ment, inter-process communication, interrupt handling, or process synchroniza-
tion have to be provided in an efficient manner making use of a very restricted
resource budget. Various techniques like library-based approaches, monolithic
kernels, microkernels, or virtual machines/exokernels are applied, based on spe-
cific demands. Safety critical application can be supported by separation of ap-
plications either in the time or the space domain. Multi-core architectures need
special techniques for process management, memory management, and synchro-
nization. The upcoming Wireless Sensor Networks (WSN) generate special de-
mands for RTOS support leading to dedicated solutions. Another special area is
given by multimedia applications. Very high data rates have to be supported un-
der (soft) RT constraints. Based on the used encoding techniques (e.g. MPEG)
dedicated solutions can be created.

Keywords: RTOS, Scheduling, Safety Critical Systems, Wireless Sensor Networks

W. Ecker, W. Müller and R. Dömer (eds.), Hardware-Dependent Software,
© Springer Science + Business Media B.V. 2009



16 HARDWARE-DEPENDENT SOFTWARE

2.1 Introduction

Most embedded systems are bound to real-time constraints. In production
control the various machines have to receive their orders at the right time to
ensure smooth operation of a plant and to fulfill customer orders in time. Rail-
way switching systems obviously have to act in a timely manner. In flight
control systems the situation is even more restrictive. Inside technical artifacts
many operations depend on timing, e.g. the control of turbines or combustion
engines. This is just a small fraction of such applications. Even augmented
reality systems are real-time applications as augmenting a moving reality with
outdated information is useless or even dangerous.

“Real-time” means that the IT system is no longer controlling its own time
domain. Now it is the progress of time of the environment which dictates
how time has to progress inside the system. This environmental time may be
the real one of our physical world or it may be artificially generated by some
surrounding environment as well. For the embedded system there is no differ-
ence between these options. Kopetz defines real-time systems as “A real-time
computer system is a computer system in which the correctness of the system
behaviour depends not only on the logical results of the computation, but also
on the physical instant at which these results are produced” [Kop97]. This
means that in strict real-time systems a late result is not just late but wrong.
The meaning of “late” of course has to be defined dependent on the specific
application. In case of an air-bag controller it is intuitively clear what real-
time means and it is easy to understand that a late firing of the air-bag is not
only late but definitely wrong.

It can be concluded that in real-time systems the program logic of appli-
cation tasks has to be augmented by information about timing. Such timing
information contains the earliest point of time the task may be started as well
as the latest allowed finishing time. This, together with the program logic may
be seen as a specification for the computing system what to do and when to do
it.

Many such tasks may have to be executed concurrently on an embedded
computing system. Such situations usually are handled by some kind of op-
erating system. The same is true in case of real-time systems. But now an
additional objective function is introduced, an objective function which domi-
nates most other ones: Formulated real-time constraints have to be respected.
An operating system which is capable of taking care of this is called a “Real-
time Operating System (RTOS)”. Of course some additional information is
needed by an RTOS to manage real-time tasks. Especially the worst-case ex-
ecution time (WCET) on the specific target architecture of any real-time task
has to be available. Determining the WCET of a task is a demanding goal
on its own. It must never be underestimated. On the other hand the potential
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over-estimation has to be reduced as far as possible to allow efficient system
implementations.

The above discussion indicates that we first have to discuss fundamental
properties of real-time tasks. On this basis we can then introduce basic tech-
niques used in RTOS to handle such tasks. We will concentrate on real-time
scheduling and on schedulability analysis.

2.2 Characteristics of Real-Time Tasks

First of all a real-time task is a task like any other. However, there is an
essential difference to other computation: the notion of time. Time means that
the correctness of the system depends not only on logical results but also on the
time the results are produced. In contrary to other classes of systems in a real-
time system the system time (internal time) has to be measured with same time
scale as the controlled environment (external time). One parameter constitutes
the main difference between real time and non-real-time: the deadline. Any
postulated deadline has to be met under all (even the worst) circumstances.
This has the consequence that real-time means predictability. It is a wide-
spread myth that real-time systems have to be fast. Of course they have to
be fast enough to enable guaranteeing the required deadlines. Most of all,
however, a real-time system has to be predictable. Ensuring this predictability
even may slow down a system.

Real-time systems can be characterized by the strictness of real-time restric-
tions.

A real-time task is called hard if missing its deadline may cause catastrophic
consequences on the environment under control. Typical application areas can
be found in the automotive domain when looking at e.g. power-train control,
air-bag control, steer by wire, and brake by wire. In the aeronautics domain
engine control or aerodynamic control may serve as examples.

A RT task is called firm if missing its deadline makes the result useless, but
missing does not cause serious damage. Typical application areas are weather
forecast or decisions on stock exchange orders.

A RT task is called soft if meeting its deadline is desirable (e.g. for per-
formance reasons) but missing does not cause serious damage. Here typical
application areas are communication systems (voice over IP), any kind of user
interaction, or comfort electronics (most body electronics in cars).

Concerning timing, a real-time task Ji can be characterized by the following
parameters: Arrival time ai , WCET Ci , (absolute / relative) deadline di / Di ,
start time si , finishing time fi (see Fig. 2.1).

The arrival time ai is the time Ji becomes ready for execution. Sometimes
it is also called request time or release time, denoted by ri . It is a parameter
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Figure 2.1. Parameters of a real-time task.

under control of the application task. A task which is not known to the RTOS
obviously is also not considered by it.

Another parameter that comes with the application task is its computation
time Ci . This is the WCET which has to be determined previously and has to
be known by the RTOS. Of course it is the WCET only under the assumption
that the task is not interfered by any other task. Interference can happen only
when managed by the RTOS. So any influence by interference due to other
tasks is known by the RTOS and has to be considered by the RTOS.

The third parameter that comes with the application task is its deadline.
Here a distinction has to be made between an absolute deadline, denoted
by di and a relative one, denoted by Di . Absolute deadline means a value
with respect to the global time of the entire system while relative deadline
means relative to the arrival time of the respective task. In any case, it has
to be guaranteed by the RTOS that the tasks will be finished not later than
the deadline, independent from any circumstances, even the worst imaginable
ones.

The remaining two parameters are under control of the RTOS. It is the RTOS
that decides when to start an application task, i.e. to set the start time si . Of
course it can never be earlier than the arrival time ai as before this time the task
is entirely unknown to the RTOS.

In a similar manner it is up to the RTOS when a task reaches its finishing
time fi . It can be calculated to be at least si +Ci . However, Ji may be disturbed
by other tasks so that the finishing time fi may be later. Whenever this happens,
it happens under control of the RTOS. Therefore it is the responsibility of the
RTOS to guarantee that fi is not later than the respective deadline.

Orthogonally to the distinction into soft, firm, and hard real-time two main
classes of tasks can be identified: periodic and aperiodic ones. Both types are
generic tasks, i.e. over time a sequence of instances is generated. Usually such
an instance is called job. All instances share the same code and therefore the
same WCET and relative deadline. In case of periodic tasks these instances
show up with a fixed period, denoted by Ti . This means that once knowing the
first arrival time, all following arrival times are pre-defined. The first arrival
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time, i.e. the arrival time of the first instance usually is called the phase of this
(generic) task, denoted by φi.

In the case of aperiodic tasks no period is present, i.e. the next arrival time
of an instance of an aperiodic task is unknown a priori and may happen at any
time. Usually the assumption is made, that up to the absolute deadline of a task
instance no additional instance will be issued into the system.

Periodic tasks reflect directly the “sense–execute–act” loop in control ap-
plications. They therefore represent the main workload of embedded systems.
Any RTOS usually is optimized into the direction of handling such tasks in an
optimized manner. Aperiodic tasks appear for initialization reasons, for setting
of parameters and, most importantly, for the handling of interrupts that show
up in an aperiodic manner. There is a certain style of programming embed-
ded systems which reduces the software to a strictly event driven system. The
NesC programming language used for TinyOS [CHB+01] follows this princi-
ple. So, whenever this style of programming has to be supported, the handling
of aperiodic tasks becomes a major issue of the RTOS.

Tasks of a given task set may be independent or dependent. A task Ji is
called dependent on task Jk if Ji cannot be started before Jk has been finished.
Dependence is a transitive property. A task Ji is called direct predecessor
of task Jk if there is no task Jm between them such that Jm is dependent on
Ji and Jk is dependent of Jm. Dependencies can be defined using a directed
acyclic graph (DAG). Obviously dependencies introduce additional constraints
that need to be handled by the RTOS.

Unfortunately direct support for expressing dependencies is rarely found in
modeling and programming languages. UML Sequence Charts represent de-
pendencies, however in a rather unwieldy manner. In programming languages
dependencies have to be coded in detail and therefore are hard to be identified
in the program code.

Another constraint on task sets is introduced by non sharable resources.
A resource is any object to be used by a task. In HW this may be some circuitry
like an ALU or a bus, in SW it may be a certain data structure, a set of variables,
or a memory area. A resource is called private resource if it is dedicated to
a particular task, i.e. it is not used by any other one. In contrary to this a
shared resource is to be used by more than one task. In HW a bus is a typical
example of a shared resource. It is also a typical example for this class of
shared resources that need most care in handling: an exclusive resource is a
shared resource where simultaneous access from different tasks is not allowed.
Coming back to the bus example, a bus is an ordinary shared resource from
the point of view of components reading from this bus but an exclusive one for
any writer.

Like in the case of dependencies, direct support for specifying the class
of resources is lacking in both, modeling and most programming languages.
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There are techniques to handle such cases. In HW design special arbiters have
to be included into the circuit. Unfortunately in VHDL, e.g., they are just com-
ponents like any others, i.e. they cannot be identified easily. In SW the concept
of a so called critical section is introduced. This is a piece of code that is to be
executed under mutual exclusion constraints. The management then has to be
coded directly, e.g. using semaphores [Dij68]. They constitute the link to the
operating system as it is the OS which provides the semaphore operations as
system services. It will be shown later that the concept of semaphores needs
careful rethinking when real-time systems have to be built.

To sum up, real-time tasks can be characterized by a well defined set of
parameters. Fortunately in most publications the same abbreviations are used
for them.

� set of tasks. This set may consist of aperiodic ones, periodic ones, or
both.

τi a generic task. This means that over time many instances of this task
will exist.

τij instance j of task τi .

ri,j release time of τi,j . The release time is an absolute value and specific
for each instance.

φi phase of τi (= τi,1, i.e. release time of first instance). It is a parameter of
the entire generic task.

Ti period of τi (= interval between two consecutive activations).

Di relative deadline of τi (relative to release time, therefore a parameter of
the entire generic task).

di,j absolute deadline of τi,j (di,j = φi + (j − 1)Ti + Di). It is a property of
the specific instance.

si,j start time of τi,j (si,j ≥ ri,j ). It is an absolute value and specific for each
instance.

fi,j finishing time of τi,j (fi,j ≤ di,j ). It is an absolute value and specific for
each instance.

2.3 Real-Time Scheduling

Given is a set of n generic tasks � = {τ1, . . . , τn}, a set of m processors
P = {P1, . . . , Pm}, and a set of s resources R = {R1, . . . , Rs}. There may
exist precedences, specified using a precedence graph (DAG) and, as we are
considering real-time systems, timing constraints are associated to each task.
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The goal of real-time scheduling is to assign processors from P and resources
from R to tasks from � in such a way that all task instances are completed un-
der the imposed constraints. This problem in its general form is NP-complete!
Therefore relaxed situations have to be enforced and/or proper heuristics have
to be applied. In principle scheduling is an on-line algorithm. Under certain
assumptions large parts of scheduling can be done off-line. Generating static
cyclic schedules may serve as an example. In any case all exact or heuristic
algorithms should have very low complexity.

In principle scheduling algorithms may be preemptive or non preemptive.
In preemptive approaches a running task instance may be stopped (preempted)
at any time and restarted (resumed) at any time later. Any preemption means
some delay in executing the task instance, a delay which the RTOS has to take
care of as it has to guarantee respecting the deadline. In case of non preemptive
scheduling a task instance once started will execute undisturbed until it finishes
or is blocked due to an attempt to access an unavailable exclusive resource.
Non preemptive approaches result in less context switches (replacement of one
task by another one, usually a very costly operation as many processor loca-
tions have to be saved and restored). This may lead to the conclusion that non
preemptive approaches should be preferable in real-time scheduling. However,
not allowing preemption imposes such hard restrictions on the scheduler’s free-
dom that for most non-static cases predictable real-time scheduling solutions
with an acceptable processor utilization rate are known only if preemption is
allowed. In the sequel basic preemptive real-time scheduling algorithms for
periodic and aperiodic tasks will be discussed shortly.

2.3.1 Rate Monotonic Priority Assignment

All real-time scheduling algorithms strictly rely on priorities. So the basic
principle is that at any point of time always this task instance τij is executed
which has the highest priority among all active task instances. A task instance
τij is active in the period between its release time ri,j and its finishing time fi,j .
In this section it is assumed that a task set � of independent tasks τi with no
resource conflicts has to be scheduled.

Rate Monotonic Priority Assignment (RM) is a so-called static priority sche-
duling algorithm. In such algorithms priorities are assigned a priori and are
never modified during runtime of the system. RM assigns priorities simply in
accordance with its periods, i.e. the priority is as higher as shorter is the period
which means as higher is the activation rate. So RM is a scheduling algorithm
for periodic task sets. It is assumed that the periods of the different tasks differ,
we have so called multi-rate systems (handling of single-rate systems is trivial).
In addition it is assumed that the relative deadlines of the tasks are identical to
the periods (Di = Ti). RM is intrinsically preemptive as it may happen that
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a task instance is running when a new instance of a lower-period, i.e. higher
priority task is released. In such a case the currently running task is preempted
in favor of the newly arriving one. See Fig. 2.2 for an example of a schedule
produced by RM. There are two tasks, τ1 (period T1 = 3, WCET C1 = 1)
and τ2 (period T2 = 7, WCET C2 = 4). The first two instances of τ2 are
preempted once, the third one twice due to starting new instances of the higher
priority τ1.

Figure 2.2. RM example schedule.

It can be shown [But04, p. 78ff] that RM is optimal among all fixed prior-
ity scheduling algorithms in the sense that if RM does not provide a feasible
schedule than no other fixed priority algorithm can.

A hard real-time system cannot be started before carefully analyzing its
schedulability. A specific schedule is called feasible if all instances τij of all
tasks τi can be completed according to a set of specified constraints. A set of
tasks is called schedulable if at least one algorithm does exist that can produce
a feasible schedule. When applied to RM the algorithm has already been se-
lected. The question now is to decide a priori whether a given task set � is
schedulable by RM.

A simple test is given by comparing the utilization of the given task set
with the utilization of the worst imaginable task set which is still schedulable
by RM. This constitutes a least upper bound (LUB) of utilization among all
potential task sets.

Given a set � of aperiodic tasks the processor utilization factor U is the
fraction of processor time spent in the execution of the tasks set. Ci/Ti is the
fraction of processor time spent in executing task τi . The utilization U of �

can be calculated simply by the sum

U =
n∑

i=1

Ci

Ti

. (2.1)

Obviously this can be done off-line as no runtime parameters are used in this
formula. It can be shown [But04, p. 87ff] that the utilization LUB, Ulub, i.e.
the utilization of the worst case task set is given by Ulub = n(2

1
n − 1) which

converges towards Ulub = ln 2 ≈ 0.69 with increasing n. As the number n of
tasks in the given task set � is known a priory as well, Ulub can be calculated
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off-line and as a consequence the schedulability analysis can be performed
off-line. Unfortunately Ulub = n(2

1
n − 1) is sufficient but not necessary to

guarantee the feasibility of a given task set. There may exist specific task sets
which are schedulable under RM despite the fact that for their utilization U it
holds that Ulub < U < 1.

n∑

i=1

Ci

Di

≤ n
(
2

1
n − 1

)
, (2.2)

Ri = Ci +
i−1∑

j=1

⌈
Ri

Tj

⌉
Cj . (2.3)

In RM the assumption is made that the relative deadlines of the tasks are iden-
tical to the periods (Di = Ti). This restriction can be relaxed easily by re-
placing Ti by Di in the definition of priority assignment. The algorithm then
is called Deadline Monotonic Priority Assignment (DM). Even the schedu-
lability analysis can be transferred directly resulting in the condition as in
Eq. 2.2, which in this case, however is even more pessimistic than in the
RM case. A crisp schedulability test for fixed priority assignment strategies
like RM and DM is given by the so-called Response Time Analysis. In this
case for each task τi the largest finishing time among all instances τij with
respect to its relative deadline Di is calculated precisely. This largest fin-
ishing time is called response time Ri of task τi . If for all tasks τi of the
given task set � Ri is not greater than the relative deadline Di , schedulabilty is
proven.

The response time Ri can be calculated by Ri = Ci + Ii where Ci is the
WCET of τi and Ii is the interference due to pre-emption by higher priority
tasks. The question is how to calculate Ii . For this we have to sum up over
all higher priority tasks τj , j < i the number of inferences given by �Ri / Tj�
multiplied by the duration of the respective interference Cj . This results in the
definition of the response time Ri of task τi as shown in Eq. 2.3.

Unfortunately this is a recurrent equation as the argument Ri stands on both
sides of the equation. By an iterative algorithm, however we can calculate the
least fixpoint of the equation. If it is less or equal to the relative deadline the
test for this specific task is successful, otherwise it fails. The test is successful
for the entire task set � if it does not fail for a single task τi . So this test
is rather computation intense. Fortunately it can be carried out off-line as no
runtime parameters have to be known.

2.3.2 Earliest Deadline First Scheduling

In contrary to RM or DM, Earliest Deadline First (EDF) scheduling is a
dynamic priority assignment. Now task instances τij always get assigned a
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priority inverse proportional to their absolute deadline dij i.e. the priority is
as higher as the absolute deadline is shorter (ties are broken in favor of al-
ready running task instances). This means that whenever a task instance is
released the priorities have to be re-calculated and the priority of a task (i.e.
of its instances) may vary during runtime. Despite this difference the handling
of task instances is the same as in the case of RM or DM: At each instance
of time this task instance is executed that currently has the highest priority
among all active task instances. Therefore, like RM or DM, EDF is intrinsi-
cally preemptive. Figure 2.3 shows an example schedule produced by EDF for
the same task set as used in Fig. 2.2. The third instance of τ2 is preempted
only once as in the case of equal absolute deadlines the already running task is
preferred.

Figure 2.3. EDF example schedule.

It can be shown [But04, p. 51ff, 92] that EDF is optimal among all periodic
task scheduling techniques in the sense that if EDF does not provide a feasible
schedule then no other periodic task scheduling algorithm can. Another good
property of EDF is that schedulability analysis is really simple for EDF. A sim-
ple utilization test can be applied where Ulub = 1, i.e. the utilization just has
to be compared with the constant 1.

EDF can also be applied to aperiodic task sets. Its optimality guarantees
that the maximal lateness is minimized when EDF is applied. Lateness Li,j

of a task instance τij is defined as the time between absolute deadline and
finishing time: Li,j = fi,j − di,j .

So it seems that EDF has only advantages over fixed priority algorithms.
Despite this fact those algorithms still serve as the workhorse in most RTOS
systems. It is argued that EDF is more complicated to implement as at runtime
it has to rearrange priorities while RM or DM do not. EDF is also considered to
be extremely sensitive to overload conditions where a so-called Domino Effect
may happen, i.e. missing a single deadline may result in missing the deadlines
of all tasks of a task set. In a recent publication [But05] however, it has been
shown that most of the arguments against EDF are not relevant in practical
applications.



Basic Concepts of Real Time Operating Systems 25

2.4 Operating System Designs

The most common Operating Systems are based on kernel designs. The
kernel design has been around for almost 40 years and offers a clear separation
between the operating system and the application running on top of it, as they
are allocated in different memory locations. The processes can use the kernel
functionality by performing system calls. System calls are software interrupts
which allow switching from the application to the operating system. Therefore
the kernel needs to install an interrupt handler for different modes of operation,
depicted in Fig. 2.4, that can be enabled in the program status word (PSW):
User mode and Supervisor mode. For this reason, protection is done in modern
SoCs at peripheral side. Some registers can be changed only if the CPU signals
a specific execution mode (e.g. master mode) via a set of additional HW-signals
in the bus infrastructure.

Processes outside the OS are executed within user mode and are not al-
lowed to execute instructions which are only available in supervisor mode.
This means that the user mode instructions constitute a non-critical subset of
the supervisor mode instructions. During runtime of a process the supervisor
mode bit within the PSW is disabled and can only be enabled if an interrupt
such as a system call or an external interrupt occurs. The operating system is
responsible for enabling the user mode at the time a user process is activated.
Typically a user process has its own virtual memory address space which sep-
arates it completely from the kernel. However this is not possible on all em-
bedded microcontrollers as they may lack a memory management unit (MMU)
enabling the use of virtual memory.

The use of virtual memory, if there is a MMU available, has to be realized
without any unbound memory accesses like swapping on an external disk or re-
placing translation lookaside buffer (TLB) entries by searching a dynamically
sized page table.

To use the functionality provided by the OS kernel it is necessary to define
an interface that allows applications to use it. This interface is called the appli-

Figure 2.4. Execution modes. Figure 2.5. Application binary interface.
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cation binary interface (ABI). The ABI defines a set of system calls, a register
usage convention, a stack layout and enables binary compatibility whereas
an application programming interface (API) enables source code compatibility
through the definition of a set of function signatures providing a fixed interface
to call these functions. Figure 2.5 shows the location of the ABI within an
architectural schemata.

The kernel itself can be built in many ways and usually provides the fol-
lowing basic activities: Process management, process communication, in-
terrupt handling, and process synchronization.

Process management is responsible for process creation, process termina-
tion, scheduling, dispatching, context switching and other related activities.

Interrupt handling in a RTOS is different to the standard implementation of
an ordinary OS. In an ordinary OS interrupts can preempt running processes at
any time. This can lead to unbound delays which are not acceptable in a RTOS.
Therefore the handling of interrupts is integrated into the scheduling so that it
can be scheduled along with the other processes and a guarantee of feasibility
can be achieved even in the presence of interrupt requests.

Another important role of the kernel is to provide functionalities for the syn-
chronization and communication of processes. The use of ordinary semaphores
is not possible within a RTOS as the caller may experience unbound delays in
case of a priority inversion problem. Therefore the synchronization mecha-
nisms need to support a resource access protocol such as Priority Inheritance,
Priority Ceiling or Stack Resource policy [But04, p. 191ff].

As already stated there are different ways to realize a kernel. Today the
main design question is whether to us a monolithic kernel, a microkernel or a
combination called hybrid kernel [Sta01, Tan01].

2.4.1 Library-Based RTOS (“Kernel-Less” Approach)

For systems without MMUs the RTOS can be built as a library which is
linked together with the application. This results in one single executable
which is executed in one single address space. Therefore no loader is required
to dynamically load applications at run-time, by this minimizing the operating
system code. Another advantage of a library-based RTOS and the execution in
a single common address space is that system calls can be simply implemented
as function calls. Thus no context-switches are required when calling an op-
erating system function. This is often more efficient and less time consuming
as a full context switch with address space changes when having an RTOS
implemented as a kernel in a separated address space. The disadvantages of
a library based RTOS running on systems with no “full MMU” is the lack of
security through hardware memory separation. All application and operating
system activities have to be implemented as threads in the same address space.
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Bugs in one part of the system can easily affect the whole system. But on small
microcontrollers on which only one application is executed this disadvantage
is acceptable.

An example for a library based operating system is the operating system
library DREAMS. Operating systems and run-time platforms for even hetero-
geneous processor architectures can be constructed from customizable compo-
nents skeletons out of the DREAMS (Distributed Real-time Extensible Appli
cation Management System) library [Dit99]. By creating a configuration de-
scription all desired objects of the system have to be interconnected and cus-
tomized afterwards in a fine-grained manner. The primary goal of that process
is to add only those components and properties that are really required by the
application.

2.4.2 Monolithic Kernels

The monolithic approach of building a kernel is straightforward. All func-
tionality provided by the OS is realized within the kernel itself. “The structure
is that there is no structure” [Tan01]. The kernel consists of a set of procedures
which are able to call each other without any restrictions. Figure 2.6 shows
a call graph of a totally unstructured monolithic kernel versus a monolithic
kernel which is separated into service functions and help functions to bring at
least some structure into the kernel. The service functions are the entry points
for the interrupts which are demultiplexed in the main function and delegated
to the associated service function.

Figure 2.6. Unstructured vs. structured monolithic kernel.

The service functions can use any support function they need. The main
advantage of monolithic kernels is their performance. As reaction to a sys-
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tem call a context switch to the operating system has to be performed and the
appropriate service functions have to be executed in the kernel space. This is
pretty simple, as there are only function calls that need to be performed.

In the case of monolithic kernels it cannot be excluded that any single
fault occurring within the kernel functions can lead to a total crash of the
whole system. In most cases device drivers included in a monolithic kernel
are very error-prone. Several studies on software dependability report fault
densities of 2 to 75 bugs per 1000 lines of executable code. Drivers, which
typically comprise 70% of the operating system code, have a reported error
rate that is 3 to 7 times higher. A common example that can lead to a to-
tal crash is an unchecked pointer that may contain a wrong address. This
results in overwriting of sensitive kernel data such as the kernel code itself
[OW02, Sta01, Tan01, BP84, THB06].

2.4.3 Microkernels

To clean up the structural mess of monolithic kernels Fig. 2.7 shows micro-
kernel design was developed. It reduces the services provided by the kernel
dramatically by putting all services, which are not essentially necessary for the
microkernel, into user space as isolated processes. The service processes typ-
ically behave like servers of the client-server model. To use such a service an
application needs to send a message with a service request to the service which
receives the request, completes the request and sends back a response message
to the client application.

Figure 2.7. Microkernel architecture.

The big question is which services are not essentially necessary for the mi-
crokernel. The common approach puts the following services into the micro-
kernel itself: Dispatcher, Scheduler, and Memory Manager.

Whether it is necessary to put the memory manager into the microkernel is
a topic that has been discussed for a long time without any general agreement.
However some memory management for the kernel objects itself is needed
within the microkernel.

The big advantage of microkernels against monolithic kernels is the clear
separation of services from the kernel itself making the kernel a very small
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piece of software that provides a better fault isolation and can be maintained
more easily than a monolithic kernel. The fault isolation prevents crashing
the whole system. Even if e.g. a driver located in user space fails it is not
possible for the driver to manipulate any kernel sensitive data like the kernel
code.

The price we have to pay for the better structuring and fault isolation is that
we get a high amount of interprocess communication through message passing
and a high amount of context switching. The reason for this is that for every
system call at least two messages have to be sent and four context switches
have to be performed. This is illustrated in Fig. 2.8.

Figure 2.8. Client/Server IPC.

In contrast to monolithic kernels we also have to deal with an impact on the
real-time behavior, because now system calls are not necessarily executed at
the time they have been initiated. The reason is that the services behave like
regular processes that have to be scheduled by the real-time scheduler. There
are several approaches to deal with that problem. A very simple one is to
use priority message queues for the service requests within the server and to
apply priority inheritance on the server processes to guarantee that no unbound
blocking time can occur [Sta01, Tan01].

2.4.4 Virtual Machines and Exokernels

The main idea of system virtual machines is to provide an exact copy of
the available hardware for every virtual machine. Therefore a small con-
trol program is necessary to assign the available hardware to the virtual ma-
chines. This program is called the virtual machine monitor (VMM) or hy-
pervisor (cf. Fig. 2.9). This program is the only code executed in supervi-
sor mode and ensures that the virtual machines are clearly isolated from each
other.
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Figure 2.9. Virtual Machine Monitor.

The biggest issue to be solved is the question whether virtualization can
be achieved efficiently. To answer this the instruction set architecture (ISA)
plays the most important role. The ISA is divided into sensitive and innocuous
instruction. Sensitive instructions interact with hardware and need to cause
a trap to activate the VMM. Innocuous instruction can be executed natively
if possible (provided that the ISAs of the host and the virtual machine are
identical). If instructions cannot be executed natively they need to be emulated.
For emulation the target code to be executed on a different host ISA needs to be
transformed before it can be executed. The question whether an efficient VMM
can be built is reduced to the question whether the set of sensitive instructions
is a subset of the set of privileged instructions as in Fig. 2.10 [PG74].

Figure 2.10. Efficiency classification of ISAs.

Exokernels are very similar to virtual machine monitors, but they differ in
the way that exokernels do not provide an exact copy of the available hardware.
Instead they partition the available resources and assign them to the virtual ma-
chines running on top of the exokernel. A good example is the main memory
of the system. VMMs provide an exact copy of the complete main memory
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to the virtual machines running on top of the VMM. The VMM needs to map
the memory of every virtual machine to the real physical memory. Exoker-
nels do not have to manage such a mapping as the different virtual machines
would have only access to disjoint subsets of the available physical memory
[Tan01, SN05].

2.5 RTOS for Safety Critical Systems

Computer systems that operate systems of critical responsibility are called
safety-critical systems. Typically, a small deviation in the environment or the
system’s behavior, a failure or an error appearing within such a system can
yield in hazardous situations and may cause catastrophes. Safety-critical sys-
tems therefore must not only guarantee real-time behaviour but furthermore
they require absolute dependability and availability of system service. To
free application developers from implementing safety and real-time mecha-
nisms into each application, operating systems serve as the underlying plat-
form designed towards supporting real-time and all safety-incorporating non-
functional features.

Because of the critical consequences of a system failure, standards are re-
quired to specify the design and the development process. They define the
methods and techniques that are required to prevent system failures and enforce
a state-of-the-art quality-of-service in safety-critical applications. Two relevant
standards exist: IEC 61508 and DO-178B. The title of the international stan-
dard IEC 61508 is “Functional safety of electrical/electronic/programmable
electronic safety-related systems”. It is a generic safety standard that forms
the basis for many other—domain specific—standards. This standard defines
requirements on the lifecycle of safety-related systems, from system develop-
ment to its operation. It identifies measures and techniques for preventing fail-
ures and contains methods for controlling possible system failures. DO-178B
is titled “Software Considerations in Airborne Systems and Equipment Certi-
fication” and specifies guidelines for the development of avionic software. It
builds up a stringent application-dependent safety standard.

As recent trends are heading towards the integration of applications of dif-
ferent criticality levels on one single platform, operating systems for safety-
critical applications face the challenge of guaranteeing the availability of the
processor time as well as the availability of resources (full protection in time
and in space domain). These challenges must be inherently incorporated into
the RTOS architecture. The Avionics industry formulated these architectural
requirements in the ARINC 653 specification to guide manufacturers of avionic
application software towards maximum standardization.
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2.5.1 Protection in Time Domain

Running multiple applications with different criticality levels on one proces-
sor may lead to no provision for guaranteeing processor time for critical appli-
cations. Consider the following scenario: Two applications of different criti-
cality levels, each with one thread at the same priority run on a single system.
Thread 1 is a non-critical thread whereas thread 2 is a critical one that needs
at least 45% of the processor time to process its workload. As the two threads
get assigned the same priority, a scheduler will assign each of the threads 50%
of the processor time. In that case, the critical thread 2 will get its work done.
Suppose that thread 1 spawns a new thread with the same priority. Then, the
scheduler handles three threads at the same priority. As a consequence each of
the threads will get only 33% of the processor time. Hence, the critical thread
2 is not able to handle its workload any more. The requirement of protection
in time domain results clearly from this example.

2.5.2 Protection in Space Domain

Due to predictability reasons, many RTOS designers do not use virtual
memory management. The fact that multiple applications with different criti-
cality levels run on one single processor involves that processes share the same
memory space. This implies that a process is able to corrupt the code, data
or the stack of another process, intentionally or unintentionally. Furthermore,
a process can also corrupt data or code of the operating system kernel which
affects the safety and reliability of the system. In fact, it can lead to unexpected
system behavior that infects the predictability and it can even bring down the
entire system. Therefore, the protection of the memory is one key issue in
RTOS for safety critical systems.

2.5.3 Secure Operating System Architecture

The answer to the requirement of protection is an architecture that defines
a fully and securely partitioned real-time operating system. The partitioning
is carried out also in two dimensions: Spatial Partitioning and Temporal Parti-
tioning.

In particular, the basic design of such an operating system complies with
the design of an ordinary RTOS. The fundamental difference is located above
the operating system’s core layer within the application layer which in fact is
a construction of several separate partitions of the ordinary application layer
(cf. Fig. 2.11). Each partition is assigned to an integrity level only allowing
the running of applications compliant to this level. Furthermore, it consists
of a small Partition Operating System that provides operating system services
according to the safety features required by the safety integrity level. Further-
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Figure 2.11. OS architecture for safety critical systems.

more, the Partition OS in fact runs the proper applications. The operating sys-
tem core layer is responsible for the hardware-dependent functions, the device
drivers, the scheduler, etc.

2.5.4 Providing Protection in Time Domain

The Scheduler implements temporal partitioning as it is responsible for as-
signing processor time to the partitions. Temporal partitioning requires an op-
timized two-level scheduler (cf. Fig. 2.12). The processor time for each par-
tition is assigned statically. Within one scheduler period, also called major
frame, each partition gets a guaranteed time window, a minor frame, to run
its intrapartition processes. Within the minor frame, only the processes of the
appendant partition can be executed. A partition is able to run more than one
process. These processes have to be scheduled within the partition’s processor

Figure 2.12. Two-level partition scheduler.
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time frame. The partition remains the owner of the processor for the whole
time frame, even if not all the processor time is needed for computation. Con-
sidering the given example above, a thread can only create a new thread within
its own partition. Hence, the thread that creates the new thread has to share
its time slice with the new thread without affecting the processor times of the
other partitions.

2.5.5 Protection in Space Domain

To avoid corruption of the data of a safety-critical application individual ad-
dress spaces for processes are essential. Spatial partitioning is implemented by
assigning one fragment of the entire memory to each partition. The memory
space can only be accessed by the processes of that partition. Such a fragmen-
tation of the memory requires the support of an integrated Memory Manage-
ment Unit (MMU). When the scheduler switches between the minor frames, a
new set of logical addresses is assigned to the memory manager. Hence, each
partition can only access the logical address space that is mapped by the MMU
which makes careless malicious corruption across the processes of different
criticality levels impossible.

2.6 Multi-Core Architectures

Multiprocessor architectures are an attempt to solve the lack of computa-
tional power in embedded systems by enabling computational concurrency.
Using multiple lower-cost processors instead of cost-expensive high perfor-
mance processors corresponds to the cost constraints of the embedded system
market. However, multiprocessor architectures imply further challenges on
the software and hence on operating systems that support these architectures
[WJ04] .

Multiprocessor architectures consist of multiple processing entities (PE)
connected via an interconnection network. Each one of the processing enti-
ties may represent a microprocessor (central processing unit—CPU); it also
may constitute any other hardware component such as a controller, decoder
etc. There are several approaches for interconnecting the PEs but the typical
ones are: shared bus, crossbar and micro network (network on chip). Depend-
ing on the type of interconnection a system shows up different performance
(communication collisions), costs (e.g. chip area) and reliability (e.g. single-
point-of-failure).

The design of an operating system that is applied in multiprocessor systems
is strongly dependent on the underlying system architecture. The software
design process is strongly coupled or even an inherent part of the hardware de-
sign. Basically, the operating system architecture for multiprocessor systems
extends the architecture of uniprocessor operating systems: like in uniproces-
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sor operating systems it consists of the hardware abstraction layer and the core
operating system. Furthermore, the operating system for multiprocessor appli-
cation provides an inherent abstraction of the underlying system for the appli-
cation. In fact, it abstracts design decisions of the multiprocessor architecture
like:

communication programming model: shared memory vs. distributed
memory
synchronous vs. asynchronous communication
control strategy: centralized vs. decentralized
redundancy mechanism
hardware configuration
topology: static vs. dynamic
system architecture: homogeneity vs. heterogeneity

Beyond these design decisions that inherently incorporate into the RTOS
implementation, resource management and scheduling, memory management,
synchronization and interprocess communication (IPC) provide further chal-
lenges for a multi-core real time operating system.

2.6.1 Processor Management and Scheduling

The processor management and the scheduling policy strongly depend on
the design decisions of control strategy and the architectural design. The ini-
tial problem of the processor management is the assignment of processes to dif-
ferent processors. In the case of centralized control, the scheduling algorithm
deals with NP-completeness. In homogeneous systems, each process can be as-
signed to any processor in the system whereas in heterogeneous architectures
specific tasks can only be executed on specialized task-specific/application-
specific system components. This architectural decision in turn affects also
the complexity of a feasibility analysis. Multiprocessor systems enable real
concurrency and hence task-level parallelism. One challenge of the scheduling
policy is to enable processes belonging to one single job and having strong
interaction, cooperation and communication in-between these processes to be
executed simultaneously. Task Concurrency Management (TCM) addresses
the dynamic and concurrent task scheduling problem of multiprocessor real-
time operating systems. It introduces a two-phase scheduling method: design-
time scheduling and run-time scheduling. An application is represented by a
set of concurrent thread frames (TF) that consist of many thread nodes (TN),
which are independent sections of code belonging to a single thread of con-
trol, the thread frame. At design-time, the scheduling is applied on each
identified TN and results in a set of possible solutions that include different
mappings, orderings and, as two-phase scheduling is a cost-oriented approach
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(cost-performance, energy-oriented etc.), performance measures. From these
possible solutions the design-time scheduler generates a Pareto-optimal set.
However, to guarantee hard real-time requirements the schedules generated by
the design-time exploration rely on worst-case conditions. Instead of dealing
with the complex problem of computing schedules at run-time, the run-time
scheduler operates on the TFs by determining one configuration of the Pareto
curve established at design-time. Such a exploration at design-time signifi-
cantly reduces computational cost at run-time. Details of the TNs mapping are
invisible for the run-time scheduler which furthermore reduces its complex-
ity.

2.6.2 Memory Management

Programming parallel processing applications raises two main questions:
how do processes on different processors share data and how do these processes
coordinate themselves? The answer to these questions in the first instance
depends on the memory organisation of the system. We talk about distrib-
uted memory management if the processors possess private memories and
about shared memory in case of a single address space. In the case of dis-
tributed memory management, data sharing and process cooperation is real-
ized via message-passing. In contrast to that, shared memory management
offers processors one single address space to share and exchange data. Shared
memory systems require synchronisation mechanisms to prevent interferences
between processes while operating on shared data.

2.6.3 Synchronisation

Processors in multiprocessor real-time systems require knowledge about the
overall system time/clock. Therefore, synchronization of the global system
clock is essential to ensure time-dependent performance. Due to dependability
reasons, distributed clock synchronization mechanisms are preferred for mul-
tiprocessor RTOS as they do not provide a single-point-of-failure. There exist
some approaches to ensure the synchronization of the global system time like:
Time-Triggered Protocol (TTP), TT-Ethernet and FlexRay (in the automotive
industry) [Par07]. TTP is a protocol for fault-tolerant communication between
distributed real-time systems. The synchronization of the clock is achieved in a
masterless manner based on identifying time differences of arriving messages.
To ensure a dependable communication, the communications controllers de-
fine exact time slices for sending and receiving per system node. The clock
synchronization mechanism defined in FlexRay is similar to that one in TTP.
Basically, the synchronization is processed by sending micro ticks between the
processors. The main difference is that FlexRay enables the synchronization
of heterogeneous processor clocks by identifying local deviations of receiving
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micro ticks. Similar to TTP, the communication policy in FlexRay is imple-
mented through predefined time slots.

RTEMS1 is a known example for a multiprocessor real-time operating sys-
tem. Furthermore, the automotive industry has defined OSEK-OS2, a standard
for operating systems designed to operate on the numerous controllers that are
nowadays installed in cars.

2.7 Operating Systems for Wireless Sensor Networks

Given the recent advances in wireless sensor network (WSN) technology,
it is possible to construct low-cost and low-power miniature sensor devices
that can be spread across a geographical area in order to monitor their physi-
cal environment. Consisting of nodes equipped with a small processing unit,
memory, a sensor, a battery and a wireless communication device, WSNs en-
able a myriad of applications ranging from human-embedded sensing to ocean
data monitoring. Since each single node has only constrained processing and
sensing capabilities, coordination among devices is necessary.

Due to their specific nature, sensor networks have different requirements
compared to standard systems, such as self-configuration, energy-efficient op-
eration, collaboration, in-network processing, as well as, a useful abstraction
to the application developer. Given these requirements, a WSN OS must have
a very small footprint and, at the same time, it must provide a limited number
of common services for application developers, such as hardware management
of sensors, radios, task coordination, power management, etc. (see [Sto05]).
In the following section, we discuss some specific aspects relevant to OS for
WSNs.

2.7.1 Aspects of Operating Systems for WSNs

We identify the following important aspects in WSNs:

Hardware Management. The OS should provide abstract services (e.g. for
sensing and data delivery to neighbors). Given the lack of a memory manage-
ment unit (MMU) in typical hardware, an OS library should implement this
functionality (for more details see, e.g. [SRS+05]).

Task Coordination. There are two task coordination approaches:

Event-based Kernels: Tasks are implemented as event handlers that run
until completion. This enables concurrency without the need to elaborate
mechanisms like per-thread stacks or mutual exclusion. The main advan-

1http://www.rtems.com
2http://www.osek-vdx.org

http://www.rtems.com
http://www.osek-vdx.org


38 HARDWARE-DEPENDENT SOFTWARE

tage of this approach is its small memory footprint: because processes
cannot block, just a global stack is necessary. However, a major problem
occurring is the difficulty to implement applications with state-driven
programming: the event-driven model is hard to manage by developers
and not all problems are easily described as state machines. Further,
interleaved concurrency is hard to realize in such systems.

Preemptive Thread Multitasking Kernels: Preemption leads to the neces-
sity of saving the current state of the registers to the stack. The neces-
sity of one stack per thread leads to a relatively high memory footprint.
Moreover, the context switch operation is rather time-consuming, i.e.
for a task set composed mainly of IO-bound tasks or small tasks, the
overhead caused by the context switch is relatively high. This problem
can however be solved by assigning a static context to each process (as
done e.g. in safety critical systems). In summary, given the resource con-
strained hardware of WSNs, the above points provide arguments against
this OS paradigm. Nonetheless, preemptive multitasking supports the
development of more complex, elaborate distributed applications and
enables a straightforward porting of existing embedded applications.

WSNOS Architecture. Given the lack of MMUs in the typical WSN node
hardware, the following OS architectures are predominantly employed (in con-
trast to e.g. monolithic kernel, microkernel or exokernel architectures in clas-
sical OS):

Library-based OS: A set of functions implementing abstractions to facil-
itate the hardware management. Typically, it does not provide memory
protection.

Component-based OS: The OS consists of composable, self-contained
components (also called “building blocks” or “modules”), which are, in
contrast to library-based OS, interconnected via clear interfaces and in-
teract with each other. They typically realize a well-defined function,
such as the computation of a Cyclic Redundancy Check (CRC), and
comprise code and state. Besides, the increased amount of modularity
and configurability, this paradigm also suits the event-based program-
ming approaches of WSNs. One example of a component-based OS is
TinyOS, in which components are wired together explicitly using events
for interaction (for details see [KW05]).

Often there are no clear borders between communication stack, OS services,
and application. Cross-layer approaches are commonly used.

Power Management. Given the energy constraints of WSNs, different power
management techniques have been developed (according to [DC05]):
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Duty Cycling: Reduces the average power utilization by cycling the
power of a given subsystem.

Batching: Amortizes the high cost of start-up by bundling several oper-
ations together and executing them in a burst.

Hierarchy Techniques: Order the operations by their energy consump-
tion and invoke the low-energy ones prior to the high-energy ones in a
fashion similar to the short-circuit techniques used by several compilers
for the evaluation of boolean expressions in various languages.

Redundancy reduction: Using compression, aggregation or message sup-
pression.

The low-power operation mode in WSNs can be addressed at various levels.
In [DC05], the following levels have been recognized: sensing, communica-
tion, computation, storage, energy harvesting and reconfigurability support.

2.7.2 Examples of WSNOS

TinyOS. TinyOS [CHB+01] is a very efficient OS for WSNs that uses event-
based task coordination in order to run on very resource-constrained nodes.
The execution model is similar to a finite state machine. It consists of a set
of components that are included in the applications when necessary. TinyOS
addresses the main challenges of a sensor network: constrained resources, con-
current operations, robustness, and application requirement support.

Each TinyOS application consists of a scheduler and a graph of components.
The components are described by their interface and internal implementation.

The concurrency model in TinyOS consists of a two-level scheduling hier-
archy: events preempt tasks, but tasks do not preempt other tasks. Each task
can issue commands or put other tasks to work. Events are initiated by hard-
ware interrupts at the lowest levels. They travel from lower to higher levels
and can signal events, call commands, or post tasks. Wherever a component
cannot accomplish the work in a bounded amount of time, it should post a task
to continue the work. This is because a non-blocking approach is implemented
in TinyOS, where locks or synchronization variables do not exist. This means
that components must terminate.

Mantis Operating System (MOS). The Mantis operating system (MOS) is
a WSN OS designed to behave similarly to UNIX and provides a larger func-
tionality than TinyOS. It is a lightweight and energy-efficient multithreaded OS
for sensor nodes.

In contrast to TinyOS, the MANTIS kernel uses a priority-based thread
scheduling with round-robin semantics within one priority level. To avoid race
conditions within the kernel, binary and integer semaphores are supported.
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The OS offers a multiprogramming model similar to that present in conven-
tional OS, i.e., the OS complies with the traditional POSIX-based multithread-
ing paradigm. All threads coexist in the same address space. The existence
of multiple stacks (one per thread) makes MOS more resource-intensive than
single-threaded OS (e.g. TinyOS).

The kernel of Mantis OS also provides device drivers and a network stack.
The network stack is implemented using user-level threads and focuses on the
efficient use of the limited memory.

Contiki. The Contiki [DGV04] operating system provides dynamic loading
and unloading of programs and services during run-time. It also supports dy-
namic downloading of code enabling the software upgrade of already deployed
nodes. All this functionality is offered at a moderate price: the system uses
more memory than TinyOS but less than Mantis OS.

The main idea of Contiki is to combine the advantages of event-driven and
preemptive multithreading in one system: the kernel of the system is event-
driven, but applications desiring to use multithreading facilities can simply use
an optional library module for that. A Contiki system is partitioned in core and
loaded programs. This partition is determined at compilation time. The core
comprises the kernel, program loader, run time libraries, and communication
system.

2.8 Real-Time Requirements of Multimedia Application

The timing constraints for multimedia traffic originate from the requirement

to maintain the same temporal relationship in the sequence of informa-
tion on transmission from service provider to service requester

from the necessity of preferably low offset delays between information
departure and arrival

the requisite to keep multiple types of media in sync

Consequently, each piece of information needs to be transmitted within a
bound time frame and the traffic becomes real-time. Any failure to meet the
timing constraints impairs the user-perceived Quality of Service (QoS) of net-
worked multimedia applications. Different types of applications, however,
have different QoS requirements. Common multimedia applications can be
classified as multimedia playback applications, streaming applications, and
real-time interactive.

Multimedia playback applications transmit content that is pre-encoded
and stored on a video server. A typical representative of this application
is Video on Demand (VoD). As the video transmission is one-way and
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does not involve conversational or low-latency bound elements, this type
of application is tolerant to delays and delay variations.

Streaming applications, as opposed to playback applications, require en-
coding video content on the fly as it is not available beforehand. This
type of application does not involve conversational elements, but the
latency of the transmission has a strong impact on the perceived user
experience of the content. A typical candidate for a streaming appli-
cation is Internet Protocol TV (IPTV) and presentable content covers
live transmissions of sport events. Consequently, streaming applications
have tighter requirements on delay bounds and delay variations.

Real-time interactive applications exhibit the most challenging require-
ments with respect to delay and jitter. The interactive character of the
applications requires conversational elements that often include speech
and video. Video conferencing and interactive gaming are common rep-
resentatives for this type of application. As the human perception is
more sensitive to audio than it is to video it requires an undelayed syn-
chronization between the two. Therefore, the delay bounds for this type
of application are even more stringent than those for streaming applica-
tions.

QoS denotes a collective assemblage of components that (1) transform the
qualitative set of user and application requirements into quantifiable perfor-
mance metrics for resource allocation and (2) enforce them along the network
path between a service requester and a service provider [Dit08]. Common per-
formance metrics include the network bandwidth and acceptable bounds for
packet loss, delay, and jitter. The key to QoS enforcement is to differentiate
traffic into isolated transmission queues and provide resources on a per-flow
(Intserv) or per-class (Diffserv) basis. This is accomplished by QoS traffic
control and its approaches for call admission control (CAC), traffic classifica-
tion, traffic shaping & policing, packet queueing, and packet scheduling. The
cohesions of the individual approaches are depicted in Fig. 2.13.

The purpose of CAC is to protect traffic in a shared network by determining
if an additional traffic flow’s request for resources can be approved without
causing interference to the resource allocation of admitted flows. It relies on
a flow’s traffic characterization that describes its performance metrics. A traf-
fic classifier investigates packets for their priority level and forwards them to
respective transmission queues that implement the traffic differentiation and
isolation. Traffic policing and shaping ensure that flows conform to their traf-
fic characterization, thereby defending the network against unexpected traffic
bursts. The differentiated transmission queues are served by a scheduler ac-
cording to a predefined scheduling policy that ensures the resource enforce-
ment.
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Figure 2.13. QoS Traffic Control Approaches.

The transmission of multimedia traffic across wireless networks imposes
new and unique design challenges to the QoS traffic control and requires lever-
aging of the interaction among individual QoS approaches (1) toward lower
layers of the communication model to optimize the resource provisioning of
the scarce network resources and (2) in direction of the higher layers to per-
form content adaptation with different levels of granularity. The new chal-
lenges trace back to imperfect wireless transmission channels and the highly
fluctuating traffic loads of multimedia applications. They are addressed by uni-
directional cross-layer management approaches which can be partitioned into
cross-layer optimization and cross-layer adaptation. Cross-layer optimization
targets to improve the utilization or throughput of multimedia traffic in wireless
networks by exploiting the time-varying channel characteristics. Cross-layer
adaptation adjusts the content quality in respect to the traffic load toward the
higher layers of the communication model. Popular approaches for multiple
layer adaptation are Joint Source Channel Coding (JSCC) concepts [KYF+05].

2.9 Conclusions

Embedded applications in most cases are bound to real-time constraints
and are usually executed on top of a Real-time Operating System (RTOS).
Real-time tasks have to be annotated with basic timing information in order
to enable the underlying RTOS to manage them properly. Such parameters
include arrival time, worst case execution time (WCET) and (relative or ab-
solute) deadline, just to mention the most important ones. Explicitly provid-
ing these information distinct real-time applications from ordinary ones where
such information (usually characterized as non-functional properties) is avail-
able only in implicit manner. Having such characteristics in hand, specific
scheduling algorithms can be designed. Most real-time applications show pe-
riodic behavior. When possible, static cyclic schedules are calculated off-line.
If more flexibility is needed on-line techniques are applied. These algorithms
are bound to priorities which can be assigned statically as in the case of Rate
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Monotonic (RM) or Deadline Monotonic (DM) priority assignment, or dy-
namically as in the case of Earliest Deadline First (EDF). The latter one can
be applied to a-periodic tasks as well. Task sets that consist of both periodic
tasks and a-periodic ones, are more complicated to handle. An approach for a
unified management of such situations is the introduction of so called servers.
A server in this context is a periodic task that offers its processor utilization for
executing a-periodic tasks.

Designing a proper RTOS architecture needs some delicate decisions. The
basic services like process management, inter-process communication, inter-
rupt handling, or process synchronization have to be provided in an efficient
manner making use of a very restricted resource budget. Various techniques
like library-based approaches, monolithic kernels, microkernels, or virtual ma-
chines/exokernels have been developed, each of them dedicated to specific de-
mands. The classical approach is given by monolithic kernels. They allow
efficient handling of service requests. Microkernels export as many services as
possible into user space, thus reducing the risk of kernel corruption. Library-
based approaches are more or less kernel-less. They can be adapted precisely
to the needs of applications to be supported. Recently exokernels did gain in-
terest. They support safety requirements in an elegant manner based on their
virtualization technique.

Safety critical application can be supported by separation of applications ei-
ther in the time or the space domain. Dedicated RTOS architectures preferably
follow the concept of virtual machines/exokernels. By providing separated ad-
dress spaces (space domain) or strictly separated time frames in scheduling
(time domain) the mutual influence of tasks is substantially reduced. Multi-
core architectures need special techniques for process management, memory
management, and synchronization. Especially scheduling needs consideration
as most of the classical RT scheduling methods are proven to be optimal only
for mono-processor systems. An excellent fundamental architecture for dis-
tributed real-time systems is provided by time-triggered architectures, making
use of time-triggered communication protocols.

The upcoming Wireless Sensor Networks (WSN) generate special demands
for RTOS support leading to dedicated solutions. The nodes of a WSN are
equipped with extremely restricted resources. Due to power constraints they
have to be inactive for a large fraction of time. This implies special demands
concerning communication and synchronization. As a consequence of these
special requirements dedicated RTOS concepts have been developed. Strictly
even-based approaches (e.g. UCB’s TinyOS) may serve as an example. How-
ever, a tendency towards more standard multi-threading execution models can
be observed. Another special area is given by multimedia applications. Very
high data rates under (soft) RT constraints have to be supported. Based on
the used encoding techniques (e.g. MPEG) dedicated solutions can be created.
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In such solutions the frames within an MPEG Group of Pictures (GoP) can
be scheduled in such a way that the number of frames to be dropped can be
reduced.

The RTOS layer in an embedded system provides interesting glue between
the underlying HW and the applications to be executed. Designing a fully
predictable service provider in a highly efficient manner and at the same time
making use of minimal resources is really challenging. This challenge is still
open despite the fact that impressive solutions have been found by the RT com-
munity.
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